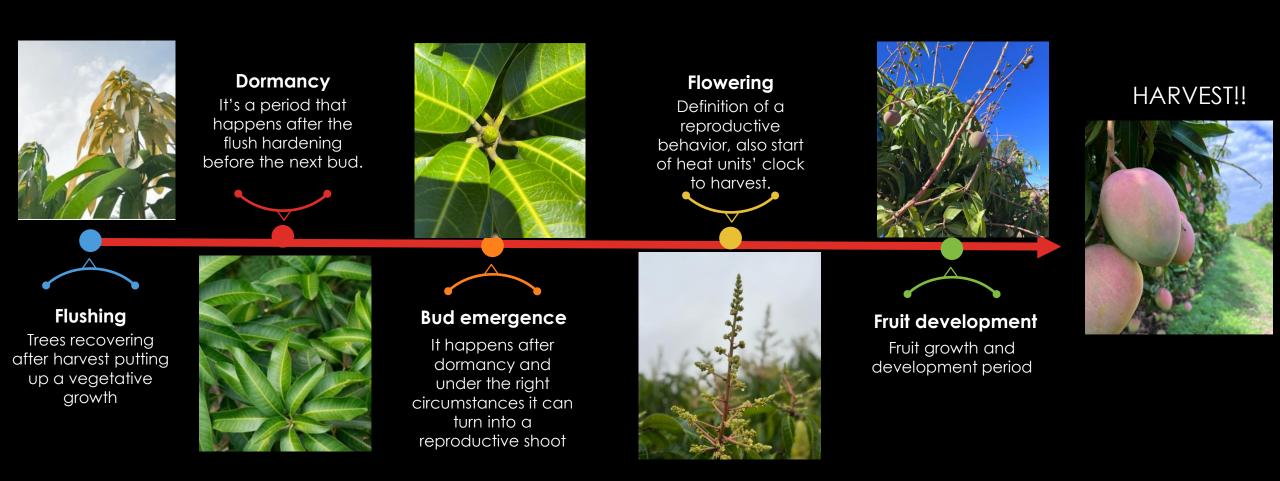
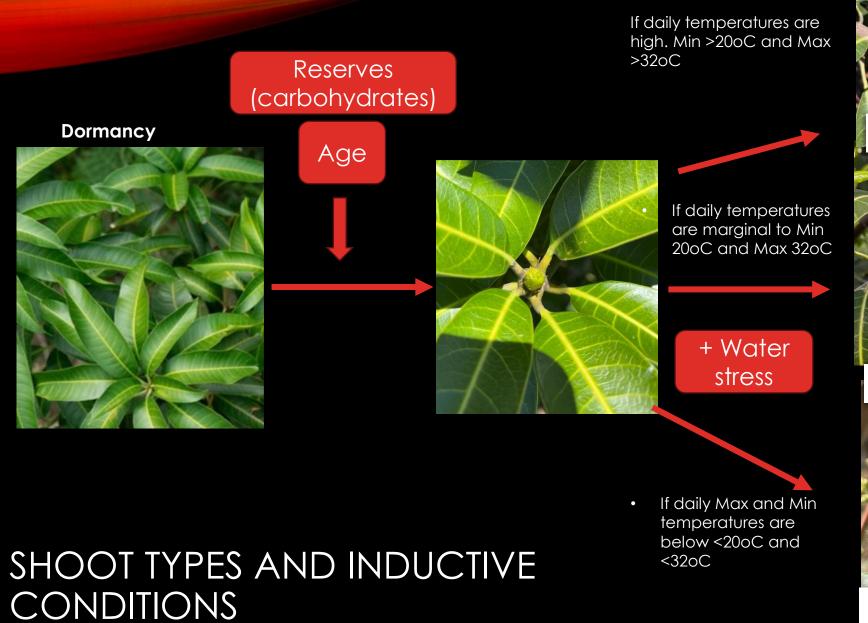


Hort Innovation MG220000 Managing mangoes for future climates

# Manipulating flowering and harvest timing

Marcelo Amaral, Kerry Walsh, Cameron McConchie and Geoffrey Dickinson.





# WHY THINK ON CONTROL OF FLOWERING?

- To match production to market
- Imagine programmed yearround production
- To avoid production in adverse weather periods (e.g. wet To avoid flood season up north).
- To adapt to climate changing



### UNDERSTANDING THE MANGO CROP CYCLE





Reproductive shoot

Mixed shoot

Vegetative shoot



#### BACKGROUND: FLOWERING MANIPULATION IN BRAZIL

- The Brazilian Agricultural Research Corporation (Embrapa) recommends (for the semi-arid region):
- 1. PBZ to inhibit GA synthesis induce flush dormancy.
- 2. K2SO4 sprays (2 or3 applications at 2.0-2.5% w/v) to halt vegetative growth
- 3. Ethephon or ethylene (200-300 ppm) release to promote vegetative bud maturation and flower induction (not effective in isolation)
- 4. NO3 (sprays at 2-4% w/v) to promote bud emergence.

https://www.embrapa.br/agencia-de-informacaotecnologica/cultivos/manga/producao/tratos-culturais/manejo-da-floracao. [Ptbr]



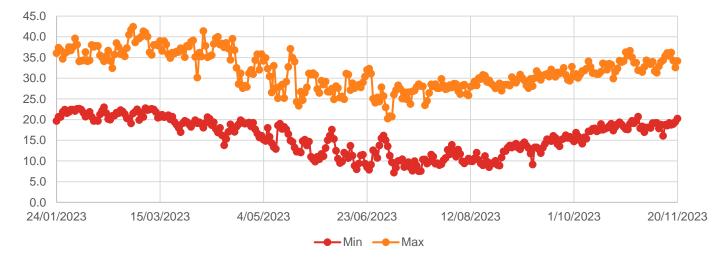


### FIELD SITES

#### Season 1 2023-24

- Darwin NT << cv B74 "Calypso"
- Dimbulah, Far North QLD <<cv B74
  "Calypso"
- Rockhampton, Yeppoon Central QLD < cv HoneyGold

#### Season 2 and 3 2024-25, 2025-26.


- Darwin NT
- Katherine NT
- Bowen, Ayr or Burdekin (NQLD)
- Dimbulah, Mareeba (FNQLD)
- Bungundarra, Yeppoon (CQLD)

Other cultivars involved in smaller exercises:

- KP
- R2E2
- Keitt
- NMBP
- Agams

## EXPERIMENTATION: TIP PRUNING AND TEMPERATURE

Figure 1. Maximum and Minimum (on-farm) temperatures in Dimbulah, FNQ region

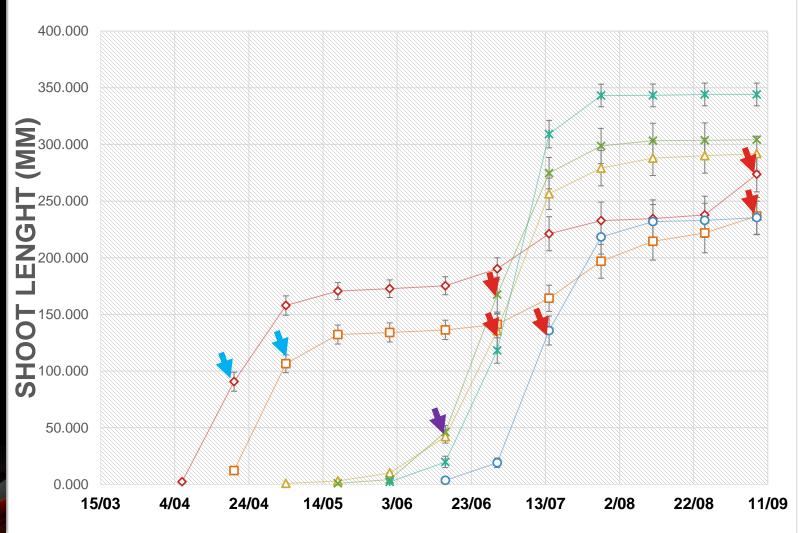


Build a cv specific model on required temperatures for floral induction



## Shoot Differentiation From tip Pruning

Vegetative shoots>60% 🜂


Mixed shoots >60%

Reproductive >60%

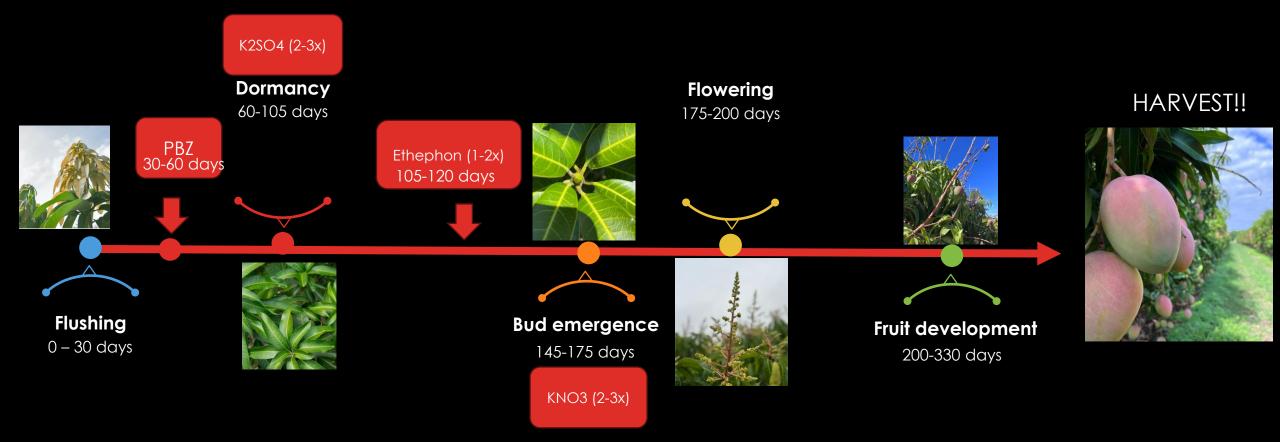
Shoot re-growth (vegetative and reproductive) following tip pruning of cv Calypso at six times

#### Different shoot types are represented by different coloured arrows

→23-Mar --6-Apr -20-Apr --4-May --18-May --1-Jun



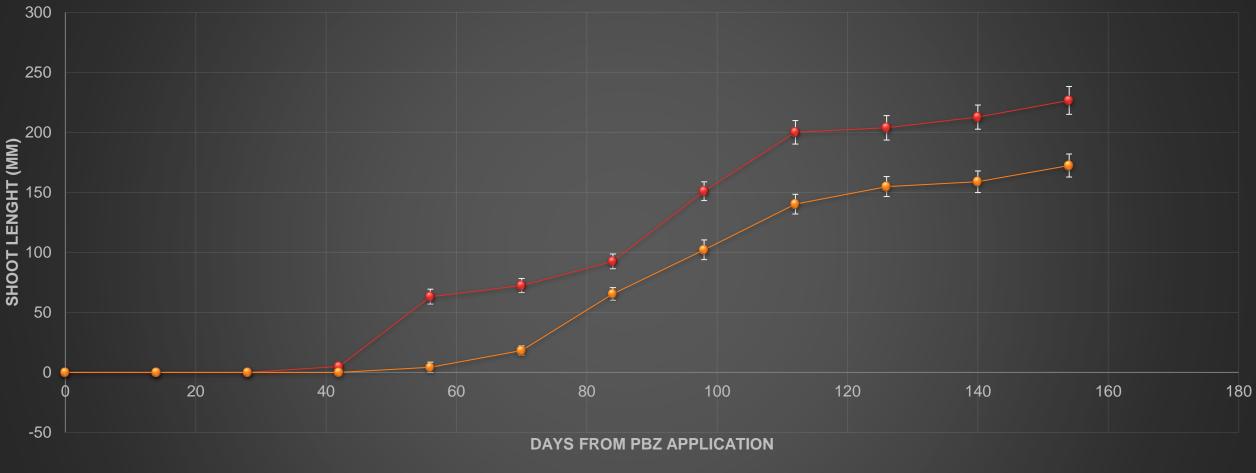












### EXPERIMENTATION : CHEMICAL MANIPULATION

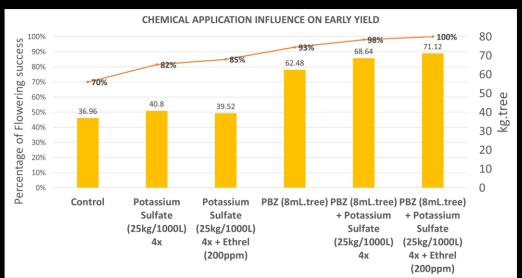


Based on Embrapa, 2021

## CHEMICALS TO CONTROL FLOWERING

PBZ application (via irrigation) on cv B74 'Calypso' in Darwin region....effect on vegetative shoot length (mm) (n=420)




### RESULT: CHEMICALS TO CONTROL FLOWERING

#### ADVANTAGES: BETTER UNIFOMITY, EARLY HARVEST, HIGHER YIELDS

Effect of PBZ, Potassium sulfate (K2SO4 ) and Ethephon on the "number of days until terminals reached 50% flowering" for 'B74 Calypso' in Darwin and Far North Queensland regions.

|                                         | Days to 50% of flowering |         |     |  |
|-----------------------------------------|--------------------------|---------|-----|--|
| Treatment/Location                      | Mango cv B74             |         |     |  |
|                                         | Dimbulah                 | Darwin  | Avg |  |
| Control                                 | 102 (±5)                 | 81 (±5) | 92  |  |
| PBZ 8mL                                 | 85 (±3)                  | 64 (±2) | 75  |  |
| PBZ 8mL + 2% K2SO4                      | 92 (±3)                  | 74 (±3) | 83  |  |
| PBZ 8mL + Ethephon<br>200ppm + 2% K2SO4 | 87 (±6)                  | 75 (±3) | 81  |  |

#### For an B74 orchard in Dimbulah, Far North QLD - harvested on 16 Nov



#### DISADVANTAGES: POTENTIAL NEGATIVE EFFECTS IF ABUSED

Chemical side-effects on tree health (a) paclobutrazol application, (b) Ethephon thinning effect on foliage (c) ethephon burn in shoots If used under high temperatures.





### HEAT UNITS FOR FRUIT DEVELOPMENT

Summary of DMC (mean ± SD) and flesh colour in cultivars ordered by GDD

| Cultivar  | GDD         | DMC (% w/w)   | Flesh colour |
|-----------|-------------|---------------|--------------|
| КР        | 1578 (± 91) | 16.4% (± 0.1) | 7 (± 1.6)    |
| NMBP 1243 | 1589 (± 67) | 16.5% (± 1.2) | 12 (± 0.9)   |
| Agam      | 1591 (± 94) | 18.0% (± 1.4) | 10 (± 1.2)   |
| NMBP 1201 | 1602 (± 67) | 15.3% (± 0.1) | 11 (±1.8)    |
| Calypso   | 1710 (± 40) | 15.2% (± 1.3) | 7 (± 1.0)    |
| HoneyGold | 1756 (± 61) | 16.4% (± 1.1) | 9 (± 0.6)    |
| R2E2      | 1759 (± 49) | 15.9% (± 0.1) | 9 (± 0.9)    |
| NMBP 4069 | 1798 (± 68) | 16.0% (± 0.1) | 11 (± 1.4)   |
| Keitt     | 2156 (±118) | 14.6% (± 0.9) | 11 (± 1.7)   |
| Palmer    | 2238 (± 63) | 14.5% (± 0.7) | 8 (± 1.4)    |



## CONCLUSION AND FUTURE RESEARCH

- Repeat tip pruning trials in different regions and cultivars with the aim to better understand Australian cultivars under different growing conditions.
- Propose temperature "chill units" models for flowering induction
- Trial combination package of PBZ + K2 SO4 + Ethephon + KNO3 with timing and doses adjusted to the cultivars and growing conditions.
- Recommendation on PBZ timing
- Support molecular work on understanding buds' differentiation QUT
- Repeat GDD work on other cultivars (R2E2, Agam, NMBPs, Lady Gracie, Lady Jane and NDM) and regions